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Abstract- Signal quantitation in most near infrared spectroscopy
(NIRS) instruments is achieved through solving simultaneous
equations or multiple regression analysis.  The aim of this study was
to compare NIRS signal quantitation by conventional multiple
regression to artificial neural networks. Sixteen adult sheep were
used in the study of the effects of changes in cerebral blood flow and
metabolism through induction of seizures, ischemia, and
hypercapnia. NIRS-derived signal attenuation for relative blood
volume (BV) and oxygen desaturation (DESAT) were compared to
simultaneous blood flow values measured by laser Doppler
flowmetry and venous oxygen saturation (SvO2) determined from
direct blood gas analysis. The regression for flow provided a zero p-
value, a variance S=17.57 and F statistic=50.49.  The residuals vs.
fits plots suggest that the current model would underestimate values
below the mean and overestimate those above the mean. An
improved regression model for SvO2 provided a zero p-value, a
variance S=14.1 and F statistic=4.26. Two different neural networks
were implemented for flow and oxygen saturation.  Both networks
“tracked” their values closely and with low cycle errors.  Neural
networks are powerful tools for evaluation of rapidly changing,
variable environments.
Keywords -  Near infrared spectroscopy, regression, neural network

I. INTRODUCTION

Near infrared spectroscopy (NIRS) is a technique that relies
on the relative transparency of biological tissues to light in the
600-1000nm range, as well as on compounds (or chomophores)
whose absorption spectra is oxygen status dependent (mainly
oxy-and deoxygenated hemoglobin, and the redox state of
cytochrome aa3) [1]. Despite the widespread use of the
technology to monitor tissue hemodynamics and oxygenation
levels, its clinical acceptance is still elusive. Absolute signal
quantitation depends on the knowledge of the distance traveled
by the photons between emission and detection, the total
pathlength. Biological tissues are inhomogeneous media where
multiple scattering events occur, resulting in longer pathlengths
than the distance between emitter and detector. Mathematical
techniques such as Monte Carlo simulations have led to the
derivation of a wavelength-dependent differential pathlength
factor (DPF) for various tissues [2]. The DPF represents a
probabilistic average distance traveled by the photons. The
various NIRS algorithms either utilise multilinear regression or
simultaneous equations and the DPF to obtain wavelength
multipliers and allow absolute signal quantitation [3]. However,
their effectiveness is questionable in conditions of physiologic
stress (as in vasoconstriction or vasodilatation) which alter tissue
geometry.

Mean pial artery dilatation of 18-29% have been reported
during hypoxia [4]. The change in diameter would result in a
redistribution of the proportion of blood volume in the arterial
vascular compartment; and therefore, of oxyhemoglobin.  These

rapid, dynamic changes can lead to significant errors in signal
quantitation.

The following study describes the use of NIRS during direct
cortical measurements from the brain of signal attenuation at
various wavelengths (760nm, 800nm, 830nm, 850nm, and
980nm) during induced changes in cerebral blood flow and
oxygenation levels.  Correlations were obtained for NIRS BV
and DESAT with independent measurements of regional cerebral
blood flow and venous oxygen saturation.  Prediction of blood
flow and SvO2 from NIRS data were calculated by both
multilinear regression models as well as artificial neural
networks.

II. METHODOLOGY

Following approval from the Royal North Shore Hospital
Animal Care and Ethics Committee (ACEC), sixteen adult
Merino Cross ewes with an average body weight of 48.4 +/- 5.3
Kg were used in the study.  In some instances, multiple episodes
of a particular protocol were carried out on the same animal.

Anesthesia

The animals were anesthetized with pentothal (1g/20 ml) as
induction, intubated with a cuffed tracheal tube (10 mm ID), and
ventilated 1 l/min oxygen (>40%), 2 l/min nitrogen dioxide
(52%), and halothane (1%) through a respirator (Bird model 8;
Bird Australia, Pty. Ltd., Chatswood, NSW, Australia).  The
respiratory parameters were monitored and adjustments were
made (in tidal volume, and/or respiratory rate) when necessary to
maintain an expired CO2 partial pressure of ~ 40 mmHg.
Maintenance fluid was provided through peripheral venous
access with 0.9% NaCl. Anesthesia was maintained with a
continuous fentanyl drip (10µg/ml) at 30 ml/kg for the first 30
minutes and then changed over to 20 ml/kg for the remainder of
the procedure. Electrocardiography was monitored with
electrodes clipped to the extremities.

Surgery

After wool was removed from the neck and thigh area,
incisions were made along both sides of the trachea and both
carotids arteries isolated and loosely fitted with rubber ties. The
left jugular vein was used for insertion of a dual cannula for
central venous pressure monitoring and IV drug administration.
A similar procedure was followed to isolate both femoral
arteries.  An arterial cannula was placed in the left femoral for
blood sampling and blood pressure monitoring. The right femoral
was used to insert a cannula for blood pressure reduction through
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the removal of blood.  Body temperature was monitored by a
rectal temperature probe.

The animal was turned over and placed in a prone position
with the legs stretched and secured to the operating table; the
head was also secured in a specially designed head holder.  After
shaving the head, a midline incision was made, the skin reflected
and the skull exposed. Burr holes were drilled on opposite sides
of the skull as well as caudally from the sagittal suture.  The size
of the holes was then adjusted to allow fixation of both the laser
Doppler flowmeter and NIRS probes.  The third burr hole was
used for cannulation of the sagittal sinus (SS) for direct venous
sampling.

Instrumentation

Laser Doppler flowmeter and NIR spectrometer-

Cerebral blood flow was monitored with an ALF21 laser
Doppler flowmeter (Advance Co., Ltd, Japan). It offers non-
destructive and continuous monitoring of blood flow (range 0-
100 ml/min/100g) on various sites in the body, like skin, stomach
mucosa, brain, and intestine surfaces.  It relies on a low-power
output semiconductor laser (780 nm with an optical power output
of <2mW) and provides measurements of fine tissue blood flow
such as capillary flow, using a 1mm diameter half-spherical
probe.

The research NIRS instrument consists of five 1 watt solid
state lasers (780, 800, 830, 850, and 980 nm) fired sequentially at
5µs pulses for a 1 ms cycle, and a 5 mm2 photodiode receiver.  In
vitro assessment of the instrument has been previously reported
[5].  The optode separation used for these studies was 0.5 cm.

The signals from the LDF and NIRS instrument, arterial and
venous pressures, and ECG were connected to a MacLab 16S
data acquisition module running Chart 3.5.6 software (AD
Instruments, Castle Hill, Australia) at a sampling rate of 4 Hz.  A
fluid filled pressure transducer was used to monitor central
venous pressure, while a 5F Millar catheter-tip manometer
(Millar Instruments, Inc., Houston, TX) provided arterial
pressure recordings.  The pressure signals were amplified
(System 6; Triton Technology, Inc., San Diego, CA) and
recorded with the MacLab analog-to-digital converter.  The
MacLab hardware and software provided the option for
continuous display and recording of all channels.

Cerebral blood flow response to hypercapnia

Cerebral blood flow was increased by introduction of 5%
CO2 into the breathing circuit for 4 minutes and then turned off.
In some animals more than one CO2 inhalation episode was
carried out.

Seizures

Changes in regional cerebral blood flow and oxygen
consumption were induced by topical application of 500 mg of
ampicillin subdurally through the SS cannula puncture.
Penicillin-induced seizures peak at around 3 minutes after
application and resolve spontaneously [6].

Ischemia

Global cerebral ischemia was implemented through
hypotension and bilateral carotid occlusion as described by Smith
and collaborators [7].  Following a stabilization period, blood gas
samples (both arterial and venous) are taken prior to the removal
of blood through hemorrhage.  Once MAP reaches < 50 mmHg,
the hemorrhage is stopped to maintain that level of arterial
pressure.  At this point the carotids ties are pulled and tightened
in place with alligator forceps to completely occlude flow.

After a period of 4 minutes of complete carotid occlusion, the
ties are released and the response observed for the next 5
minutes.  Changes in NIRS and LDF are recorded continuously
during the whole ischemic episode.  Ischemia was followed by a
10 minute period of reperfusion.  Data gathering ceased at the
end of reperfusion and the animals were euthanased with an
intravenous bolus of KCL (3g).

Statistical Analysis

The data recorded throughout the whole study were used to
implement separate multiple regression models for LDF and
SvO2, based exclusively on NIRS wavelength attenuation data (at
780 nm, 850 nm, 980 nm, 800 nm, 830 nm, DESAT, and BV).
The model’s variance (S), F statistic, and the corresponding
regression equations were obtained. A p-value < 0.05 was
considered significant.

Neural network

Two separate neural networks are described, one for
prediction of SvO2 and the other for LDF. A standard
feedforward architecture with 10 inputs (nine from experimental
data and one as a bias), a number of hidden nodes and a single
output was implemented. The network was trained with results
obtained from three sheep and validated in one. Initially, network
weight matrices were randomly assigned. After training, the final
weight matrices were obtained and used for validation. The
inputs for each network were selected according to their expected
influence on the predicted parameter.

III. RESULTS

Correlation between NIRS wavelengths and absolute flow values

Multilinear regression model- Subset regressions were carried
out to determine the effect of NIRS wavelength data on absolute
flow values, as measured by LDF from all animals.  These results
show that the single-best predictor for LDF is λ850.  However, the
best two predictors were λ850  and λ800.  A multiple regression
model using the spectrometer data exclusively to determine flow
showed that the predictors were not significant to measured LDF
values; however, the overall regression provided a zero p-value,
a variance S=17.57, and F statistic = 50.49.  The regression
equation was LDF= 25.15 * (780 nm) + 3.14 * (850 nm) + 10.24
* (980 nm) - 6.77 * (800 nm) + 7.59 * (830 nm) +3.78 *
(DESAT) - 3.87 * (BV).
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The pattern shown in the residuals vs. fits plots suggests that
the current model would underestimate values below the mean
while overestimate those above the mean, as shown in Figure 1A.

Neural network model- A network with three hidden neurons
was set up to predict LDF values from SvO2, MAP and NIRS
parameters. Due to the necessary augmentation of inputs and of
the hidden layer by one fixed input to account for bias (or offset),
this neural network should have 10 input neurons, four hidden
neurons, and one output neuron.

A

B

Figure 1: Multilinear regression plots for A) flow, and B) SvO2.

There are two weight matrices for the neural network: the
hidden layer weight matrix )103( ×W  and the output layer
weight matrix )41( ×W . This neural network is trained using the
back-propagation learning algorithm in which synaptic strengths
are systematically modified using negative gradient descent so
that the response of the network increasingly approximates the
command from the user. Although the cycle error for the training
set decreased very quickly after ~ 50 cycles, it did not seem to
continue to decrease significantly after 500 cycles.  The profile
for the training set shows that the network was accurate in
“tracking” LDF values (Figure 2A).

The final output layer weight matrix W  and hidden layer
weight matrix W  are:
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Correlation between NIRS wavelengths and SvO2

Multinear regression- The results show that the single-best
predictor for SvO2 is λ980.  The best two predictors were λ780  and
λ980. The multiple regression model to determine SvO2 showed
that the predictors were not significant to measured SvO2 values
(see Figure 1B); however, the overall regression (with the
addition of a constant) provided a zero p-value, a variance
S=14.1, and  F statistic = 4.26.  The regression equation was
SvO2= 92.6 + 95.3 * (780 nm) - 40 * (850 nm) - 45.78 * (980
nm) - 12.62 * (800 nm) - 4.16 * (830 nm) - 55 * (DESAT) -
18.21 * (BV).

Neural network model- As with LDF, a neural network with
was implemented to predict SvO2 from LDF, MAP and NIRS
parameters. This time, the model used five hidden neurons. Due
to the necessary augmentation of inputs and of the hidden layer
by one fixed input to account for bias (or offset), this neural
network should have 10 input neurons, six hidden neurons, and
one output neuron. There are two weight matrices for the neural
network: the hidden layer weight matrix )105( ×W  and the
output layer weight matrix )61( ×W . Again, this neural network
is trained using the back-propagation learning algorithm and
negative steepest descent. The learning algorithm modifies both
the output layer weight matrix W  and the hidden layer weight
matrix W  so that the error value decreases.

The SvO2 training set showed that the network “tracked” the
SvO2 values quite well, with the cycle error considerably
decreased after only ~100 cycles and further decreased with
increasing number of cycles (Figure 2B).

The final output layer weight matrix W  and hidden layer
weight matrix W  are:
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IV. DISCUSSION

The best multilinear regressions had significant shortcomings
with regards to underestimates for flow values below the mean,
as well as overestimates for those values above the mean.
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Figure 2: Neural network output for A) flow, and B) SvO2.

The neural networks implemented in this study are not in final
form; however, they do show that simple static algorithms cannot
accurately describe the wide variability of physiological
responses between subjects. Additional training of the network
will further reduce the error. Predicting SvO2 using the network
proved more accurate than flow. The response for SvO2 in all
animals was consistently similar during each experimental block,
ie. before and during seizures, pre-ischemia, at the end of
ischemia, and 4 minutes post reperfusion after ischemia.

Despite the actual differences in values, the pattern for SvO2
was the same in all animals, however, this was not the case with
LDF. Although the flow values also correspond with the points
in time during which SvO2 values were obtained, the flow
response is not as predictable as the SvO2 response.  Specifically,
in the animal used for validation of LDF, the pattern of LDF is
different from that seen in the training set. Despite these
differences, the network does a good job in tracking LDF.

Obviously, the data gathering and training of the network
does require careful preparation and a strict research protocol.

However, once the appropriate training set is implemented with a
significant number of subjects, the network should be able to
cope with most of the possible permutations and provide fairly
accurate values for the “predicted” parameters.

Signal quantification achieved through the implementation
and training of artificial neural networks is more accurate, and
flexible than algorithms obtained through multiple regression
models. Because of the high spatial variability of cerebral blood
flow, its quantification is less accurate than that of SvO2.
Through neural networks, it is possible to predict absolute flow
and venous oxygen saturation values without any input from the
physical properties of light transport in tissue (eg multiple
scattering, depth of penetration of photons, superficial tissues and
boundary layers, etc.) with much higher accuracy than multiple
regression methods.  Testing of the network on the rest of the
data will allow determination of its sensitivity and specificity.

V.CONCLUSION

In the ever changing physiological environment, neural
networks prove significantly more accurate than multilinear
regression methods used for NIRS signal quantification of
cerebral blood flow and oxygen consumption.
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